

- High-Performance
 Waveform Capture up to
 70 MS/s and Waveform
 Generation up to 100 MS/s
 at 14-bit Resolution
- Flexible Configurations with Matched Digitizer and Digital-to-Analog Converter up to 4 Total Channels
- Capture Floating or Ground-Reference Signals with Selectable Differential or Single-Ended Digitizer Inputs
- Flexible Triggering and Synchronization
- 512k of Waveform Memory per Channel
- Ideal for Avionics,
 Medical, Semiconductor,
 Audio and
 Telecommunications Test
- Register-Based for High Throughput or Message-Based for Ease-of-Use

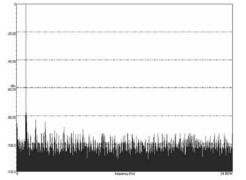
Dual 14-bit, 70-MHz Digitizer and 100 MHz Digital-to-Analog Converter

High Performance Digitizer

Racal Instruments 6088-14 features up to 4 high-performance digitizer channels. The 6088-14 is intended for high-speed/high-resolution waveform capture. Performance is excellent in the time domain (ramps, step response) as well as in the frequency domain (sine waves, multi-tone signals).

High Performance DAC

Racal Instruments 6088-14 features up to 4 high-performance digital-toanalog converter (DAC) channels. Each channel can generate waveforms at rates up to 100 MS/s at 14-bit resolution


Flexible Configurations

Choose up to 4 channels in a space-saving single-slot design. Racal Instruments 6088 configurations include a 2 or 4-channel digitizer, a 2 or 4-channel DAC, or a matched combination of a 2-channel digitizer with a 2-channel DAC.

Applications

Applications include analog-to-digital converter (ADC) test, DAC test, audio device test, defibrillator test, or whenever high speed sampling is

required.

The plot below shows a 16384 point FFT plot of a 1 MHz tone sampled at 50 MS/s using a Blackman window.

Parameters for this plot are as follows: 68.9 dB SINAD, -81.2 dB THD, 70.5dB Signal to Noise Ratio, -82.7dB Peak Distortion, 85.8 dBc spurious noise.

The absolute accuracy of the

6088-14 is unmatched in competing products, making the 6088-14 useful for DAC characterization.

The VXI*plug&play* driver for the 6088-14 includes a Graphical User Interface plus instrument drivers for C, C++, LabWindows/CVI and Visual Basic. In addition, a LabVIEW driver is available.

6088-14 PRODUCT SPECIFICATIONS

DIGITIZER SPECIFICATIONS **PERFORMANCE**

ADC Resolution

14-bits each channel

Sample Rate

Internal Clock: 500 kHz to 70 MHz

Absolute Accuracy (INL)

 $\pm (500 \, \mu V + 0.1\% \text{ of range})$ With attenuator on: $\pm (2.5 \text{ mV} + 0.2\% \text{ of range})$

Relative Accuracy

± 0.025% of range

DC Offset Voltage

-5 V to +5 V With attenuator on: -25 V to +25 V

Clock Sources

Internal: 70 MHz or 50 MHz External: Front panel connector

External Clock Input

Logic Thresholds: VLOW < 0.6 V

VHIGH > 4.5 V Impedence: 50 Ω Maximum Input: 100 MHz **External Clock Output**

Clock Levels: VLOW < 0.6 V

VHIGH > 4.5 V Impedence: 50 Ω

Clock Division Rate

User-selectable from 1 to 256 Independent clock source selection per channel

Clock Accuracy

100 ppm

Memory Depth

512 k-words per channel

Frequency Response

(Referenced at 500 kHz) 0 to 20 MHz (±0.5 dB) 20 MHz to 50 MHz (±2.0 dB)

TRIGGERING

Trigger Sources

Front Panel (External) VXI triggers, software trigger, analog trigger

Trigger Modes

Positive level, negative level, positive edge, negative edge, positive edge continuous, and negative edge continuous

Front Trigger Impedance

10 k Ω DC

Front Trigger Levels

Vlow: < 0.6 V Vhigh: > 2.4 V

INPUTS

DC Offset Range

Normal:-5 V to +5 V

With attenuator on: -25 V to +25 V

Ranges

Normal: 1 V (p-p) 2 V (p-p) 4 V (p-p)

With attenuator on:

5 V (p-p) 10 V (p-p) 20 V (p-p) Filters None 30 MHz 15 MHz

6 MHz

(3-pole Butterworth)

SFDR (fs = 50 MHz/VIN = 2 V(p-p))

80 dB @ fIN = 1 MHz 72 dB @ fIN = 10 MHz

SINAD (fs = 50 MHz/VIN = 2 V(p-p))

68 dB @ fIN = 1 MHz 64 dB @ fIN = 10 MHz **Channel Crosstalk**

<70 dB @ 1 MHz

FRONT PANEL INPUTS

Bandwidth (-3dB, filter off)

70 MHz

Coupling

DC AC Connector SMR

Impedance (Selectable)

50 Ω AC-coupled 50 Ω DC-coupled 10 K Ω DC-coupled Input Configuration Single ended Differential

DAC SPECIFICATIONS **PERFORMANCE**

DAC Resolution

14 bits each channel

Sample Rate

With internal clock: 40 kHz to 100 MHz With external clock, DC to 100 MHz

Absolute Accuracy

±(500µ V+ 0.1% of range)

Relative Accuracy (INL)

±0.025% of range

DC Offset Voltage

-2.5 V to +2.5 V

Memory Depth

512 k-words per channel

SAMPLE CLOCK

Division Rate

User selectable from 1 to 256 Independent clock source selection per channel

Sources

Internal: 70 MHz. 100 MHz External Front Panel Connector

PXI CLK 10: 10 MHz

External Clock Input

Source: SMB front panel connector Maximum Frequency: 100 MHz Clock Levels: Vlow: <0.6 V Vhigh: >1.4 V

Impedance: 500

External Clock Output

Logic Thresholds: Vlow: < 0.6 Vhigh: > 4.5 V (no load) Impedence: 50 Ω DC

Accuracy

±100 ppms

TRIGGERING

Trigger Sources

Front Panel, VXI triggers, software trigger

Trigger Modes

Positive Level, negative level, positive edge, negative edge. positive edge continuous, and negative edge continuous

Front Trigger Impedance

10 k Ω DC

Front Trigger Levels

Vlow: < 0.6 V Vhiah: > 2.4 V

6088-14 ORDERING INFORMATION

ORDERING INFORMATION

MODEL/DESCRIPTION

Racal Instruments 6088-14-DIG, 2-Channel 14-bit, 70 MHz Digitizer
Racal Instruments 6088-14-DIG-DIG, 2-Channel 14-bit, 70 MHz Digitizer
Racal Instruments 6088-14-DIG-DAC, 2-Channel Digitizer, 2-Channel DAC
Racal Instruments 6088-14-DAC, 2-Channel 14-bit, 70/100 MHz DAC
Racal Instruments 6088-14-DAC-DAC, 4-Channel 14-bit, 70/100 MHz DAC

PART NUMBER

407989-001 407989-002 407989-003 407989-011 407989-012

The EADS North America Defense Test and Services policy is one of continuous development, consequently the equipment may vary in detail from the description and specification in this publication.

